4.9t^2+17t^2-300=0

Simple and best practice solution for 4.9t^2+17t^2-300=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4.9t^2+17t^2-300=0 equation:



4.9t^2+17t^2-300=0
We add all the numbers together, and all the variables
21.9t^2-300=0
a = 21.9; b = 0; c = -300;
Δ = b2-4ac
Δ = 02-4·21.9·(-300)
Δ = 26280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{26280}=\sqrt{36*730}=\sqrt{36}*\sqrt{730}=6\sqrt{730}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{730}}{2*21.9}=\frac{0-6\sqrt{730}}{43.8} =-\frac{6\sqrt{730}}{43.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{730}}{2*21.9}=\frac{0+6\sqrt{730}}{43.8} =\frac{6\sqrt{730}}{43.8} $

See similar equations:

| 150*10p=-10+10p | | 10.87+6.4u=5.9u+4.32 | | (x)/2/9=6 | | 5/4+4m/5=51/20 | | -16.94+12s=14.2s | | x/28=5/16 | | 1.9p=4+2.3p | | 84=5y+8 | | g+37=40 | | 9x-6=4x19 | | -11p=-5-12p | | -4s=-20-3s | | 19-6t=3+3-7t | | -12v-19v-18=18-19v | | -19+11f-10=20+18f | | 19−6t=3+3−7t | | 19+8=-3(7x-9) | | -19.07-14.07-11.5y=-8y+17.96 | | 5z+2=3(z-7) | | 2m+5=7;1 | | -4×+y=-37y=7 | | -17.91-1.6u=19.4-15.7u-14.6u | | q-39=-2 | | 2.1+10m=6.37 | | 6x-2=5x-9x+6 | | 11+7j=6j-9 | | 150m-100m+43,425=46,125-175m | | -18-2j=18+7j | | x-(.22x)=5700 | | -17.7m=-17.1m+12 | | 2q+10+9=-q-8 | | -20-5f=-6f |

Equations solver categories